Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analytically study the emergence of instabilities and the consequent steady-state pattern formation in a stochastic partial differential equation (PDE) based, compartmental model of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear forces representing the infection transmission mechanism and (2) random environmental forces represented by the Ornstein–Uhlenbeck (O–U) stochastic process which better approximates real-world uncertainties. Employing second-order perturbation analysis and computing the local Lyapunov exponent, we find the emergence of diffusion-induced instabilities and analyze the effects of O–U noise on these instabilities. We obtain a range of values of the diffusion coefficient and correlation time in parameter space that support the onset of instabilities. Notably, the stability and pattern formation results depend critically on the correlation time of the O–U stochastic process; specifically, we obtain lower values of steady-state infection density for higher correlation times. Also, for lower correlation times the results approach those obtained in the white noise case. The analytical results are valid for lower-order correlation times. In summary, the results provide insights into the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic model in the presence of strongly nonlinear deterministic infection forces and stochastic environmental forces represented by Ornstein–Uhlenbeck noise.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Synthetic traffic generation can produce sufficient data for model training of various traffic analysis tasks for IoT networks with few costs and ethical concerns. However, with the increasing functionalities of the latest smart devices, existing approaches can neither customize the traffic generation of various device functions nor generate traffic that preserves the sequentiality among packets as the real traffic. To address these limitations, this paper proposes IoTGemini, a novel framework for high-quality IoT traffic generation, which consists of a Device Modeling Module and a Traffic Generation Module. In the Device Modeling Module, we propose a method to obtain the profiles of the device functions and network behaviors, enabling IoTGemini to customize the traffic generation like using a real IoT device. In the Traffic Generation Module, we design a Packet Sequence Generative Adversarial Network (PS-GAN), which can generate synthetic traffic with high fidelity of both per-packet fields and sequential relationships. We set up a real-world IoT testbed to evaluate IoTGemini. The experiment result shows that IoTGemini can achieve great effectiveness in device modeling, high fidelity of synthetic traffic generation, and remarkable usability to downstream tasks on different traffic datasets and downstream traffic analysis tasks.more » « less
-
Learning from demonstration (LfD) seeks to democratize robotics by enabling non-experts to intuitively program robots to perform novel skills through human task demonstration. Yet, LfD is challenging under a task and motion planning (TAMP) setting, as solving long-horizon manipulation tasks requires the use of hierarchical abstractions. Prior work has studied mechanisms for eliciting demonstrations that include hierarchical specifications for robotics applications but has not examined whether non-roboticist end-users are capable of providing such hierarchical demonstrations without explicit training from a roboticist for each task. We characterize whether, how, and which users can do so. Finding that the result is negative, we develop a series of training domains that successfully enable users to provide demonstrations that exhibit hierarchical abstractions. Our first experiment shows that fewer than half (35.71%) of our subjects provide demonstrations with hierarchical abstractions when not primed. Our second experiment demonstrates that users fail to teach the robot with adequately detailed TAMP abstractions, when not shown a video demonstration of an expert’s teaching strategy. Our experiments reveal the need for fundamentally different approaches in LfD to enable end-users to teach robots generalizable long-horizon tasks without being coached by experts at every step. Toward this goal, we developed and evaluated a set of TAMP domains for LfD in a third study. Positively, we find that experience obtained in different, training domains enables users to provide demonstrations with useful, plannable abstractions on new, test domains just as well as providing a video prescribing an expert’s teaching strategy in the new domain.more » « less
-
The IoT devices are typically shipped with default insecure configurations and vulnerable software stacks rendering host networks exposed to attacks, especially small networks with no administration. We present a network system model for device configuration and operations management. Using this model, we design and implement an autonomous network management platform with device classification and traffic characterization functions integrated in a network gateway. We evaluate the system using a connected home testbed that combines IoT and general-purpose devices.more » « less
An official website of the United States government
